From the
organisers of
Hillhead logo

CEMEX turn CO2 into carbon nanomaterials

Carbon nanomaterials

Cement kiln CO2 emissions successfully converted into carbon nanomaterials in laboratory setting

CEMEX have successfully tested a process that converts cement kiln flue gas emissions into carbon nanomaterials, thereby transforming ‘bad’ carbon into ‘good’ carbon.

Due to their unique mechanical, thermal, electrical, and chemical properties, carbon nanomaterials have several potential applications in a wide array of industries, from construction to biomedicine.

 

The conversion technology was born out of Smart Innovation, CEMEX’s internal open innovation platform, and was one of the winners of the 2019 innovation competition, following which CEMEX’s Research and Development team continued to develop the concept.

Recently, the team achieved promising results – a carbon conversion rate of 50% in a lab setting. The next step is to scale-up the technology in a cement plant pilot within a year.

‘This breakthrough technology is significant for CEMEX, not only because it offers the potential to commercialize carbon emissions, but because it demonstrates the value of our Smart Innovation platform,’ said Fernando A. Gonzalez, chief executive officer of CEMEX.

‘The path to carbon neutrality will be built with innovation, and we remain committed to being at the forefront in developing new circular technologies and processes.’

Nanomaterials include high-tech materials such as nanofibers, nanotubes, graphene, and carbon black, which have applications in several industries including electronics, automotive, refractory ceramics, agriculture, chemicals, pharmaceuticals, textiles, and construction materials.

Thus, the proposed technology can turn CO2 emissions into a value-added product, achieving a circular process that is key to sustainable development.

CEMEX are exploring and evaluating different applications of carbon nanomaterials to develop cement-based materials with novel and advanced performance, such as mechanical, chemical resistance, or thermal and electrical properties.

These novel properties also enhance the sustainable attributes of cement-based materials, as the same CO2 emitted is used to improve the performance. Reintroducing CO2 emissions in the construction value chain would boost the industry’s contribution to the circular economy.

 

Latest Jobs

Civil Engineer (Quarries)

Forestry and Land Scotland (FLS) is seeking a Civil Engineer (Quarries) for their South Region, to manage the quarries and stone production programme